Itemset Mining Based on Cofactor Implication

نویسنده

  • Shin-ichi Minato
چکیده

(Abstract) In this paper, we propose a new method for discovering hidden information from large-scale transaction databases by considering a property of cofactor implication. Cofactor implication is an extension or generalization of symmetric itemsets, which has been presented recently. Here we discuss the meaning of cofactor implication for the data mining applications, and show an efficient algorithm of extracting all non-trivial item pairs with cofactor implication by using Zero-suppressed Binary Decision Diagrams (ZBDDs). Finally, we show an experimental result to see how many item-sets can be extracted by using cofactor implication, compared with symmetric itemset mining. Our result indicates that the use of cofactor implication has a possibility of discovering a new aspect of structural information hidden in the databases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Mining of Association Rules

The discovery of association rules showing conditions of data co-occurrence has attracted the most attention in data mining. An example of an association rule is the rule “the customer who bought bread and butter also bought milk,” expressed by T(bread; butter)→T(milk). Let I ={x1,x2,...,xm} be a set of (data) items, called the domain; let D be a collection of records (transactions), where each...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

A Survey on Infrequent Weighted Itemset Mining Approaches

Association Rule Mining (ARM) is one of the most popular data mining technique. All existing work is based on frequent itemset. Frequent itemset find application in number of real-life contexts e.g., market basket analysis, medical image processing, biological data analysis. In recent years, the attention of researchers has been focused on infrequent itemset mining. This paper tackles the issue...

متن کامل

High Utility Itemset Mining

Data Mining can be defined as an activity that extracts some new nontrivial information contained in large databases. Traditional data mining techniques have focused largely on detecting the statistical correlations between the items that are more frequent in the transaction databases. Also termed as frequent itemset mining , these techniques were based on the rationale that itemsets which appe...

متن کامل

A Fast Algorithm for Mining Utility-Frequent Itemsets

Utility-based data mining is a new research area interested in all types of utility factors in data mining processes and targeted at incorporating utility considerations in both predictive and descriptive data mining tasks. High utility itemset mining is a research area of utilitybased descriptive data mining, aimed at finding itemsets that contribute most to the total utility. A specialized fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007